Semantic Web Approach to Personal Information Management on Mobile Devices

Ora Lassila, Ph.D.
Research Fellow
Nokia Research Center
Cambridge, MA

IEEE International Conference on Semantic Computing (ICSC-2008)
August 2008, Santa Clara, CA
About the Semantic Web

- the Semantic Web is a vision of the next generation of the WWW
About the Semantic Web

- the Semantic Web is a vision of the next generation of the WWW

- the Semantic Web is a vision of the future of Personal Computing
 [Berners-Lee, Hendler & Lassila 2001]
About the Semantic Web

- the Semantic Web is a vision of the next generation of the WWW

- the Semantic Web is a vision of the future of Personal Computing [Berners-Lee, Hendler & Lassila 2001]

- as such, it is very much centered around
 - Personal Information Management (PIM)
 - social relations

- subtext: transition from tools to systems working on our behalf
 - we have had tools for thousands of years, very little has changed so far...
Interesting Characteristics of the Semantic Web

• uniformity of data
 • simplifies information interchange
 • may simplify application development
 • note: uniform *metamodel*, data itself does not need to be uniform

• future-proofing
 • (because there will always be things you did not anticipate...)

• data integration
 • easier, when data carries its semantics (some things can be automated)
 • reasoning is important
 • provenance tracking is possible
Challenges in Adopting Semantic Web Technologies

• cultural resistance
 • religious beliefs, similarity to the “AI Winter”
 • “Semantic Web is a technology for problems yet to be articulated” (and no, I am not kidding...)

• lack of business models
 • Semantic Web is an interoperability technology, hard to put a price tag on (or to generate direct revenue from)

• difficult programming models
 • if you are using RDF data as a graph data structure, why bother?
 • reasoning is important (yet mostly unfamiliar to developers)
 • my solution: hide the reasoner
Interesting Characteristics of Mobile Computing

- always with you, always “on”, always connected
 - the true Personal Computer
 - trusted device

- location-awareness
 - if the device already knows where you are, you don’t need to tell it

- context-awareness
 - modern mobile devices come with many mechanisms for deriving context

- we think of mobile devices as being limited (in comparison to PCs)
 - small screen, awkward keyboard, etc.
 - true limitations are a result of usage situations (“attention-constrained”)

ICSC 2008
Changing Nature of Personal Information Management

• traditional PIM:
 • small number of schemata (contacts, calendar, etc.)
 • most – if not all – data created by the user

• “new” PIM:
 • lots of different types of data
 • most data created by other parties
 • social connection
Use Cases

• Prototypes of systems exploiting Semantic Web from NRC Cambridge
 • OINK – generic browsing-style access to data
 • Jourknow – effortless note-taking
 • Virpi – virtual personal assistant with speech/dialogue UI
Use Cases – “OINK”

- OINK is a generic data browser and a platform for SW applications
 - type-driven customization of presentation
 - makes use of data schemata (and reasoning) in determining how to render
 - “best-effort” rendering of unknown & unanticipated data
- built on the Wilbur infrastructure (PCs, Nokia tablets, Nokia S60 phones)
 - graph storage, query engine, reasoner
 - (also used by the Sedvice system you heard about in Dr. Oliver’s talk yesterday)
RDF++ – extending RDF

• working with social networks revealed some interesting shortcomings
• identity in RDF is heavily reliant on URIs
RDF++ – extending RDF

- working with social networks revealed some interesting shortcomings
- identity in RDF is heavily reliant on URIs
- RDF++ borrows owl:InverseFunctionalProperty

![Diagram with nodes labeled Bob Smith and foaf:mbox connected by foaf:mbox property, with bob@email.com as a label]

Bob Smith

foaf:mbox

bob@email.com
RDF++ – extending RDF

- working with social networks revealed some interesting shortcomings
- identity in RDF is heavily reliant on URIs
- RDF++ borrows owl:InverseFunctionalProperty

Bob Smith

Robert Smith

+1 800 CALL BOB
RDF++ – extending RDF

- working with social networks revealed some interesting shortcomings
- identity in RDF is heavily reliant on URIs
- RDF++ borrows owl:InverseFunctionalProperty

Bob Smith

Robert Smith

+1 800 CALL BOB

bob@email.com

rdf:type

foaf:inverse functional property

rdfs:domain

rdfs:range

owl:InverseFunctionalProperty
RDF++ – extending RDF

- working with social networks revealed some interesting shortcomings
- identity in RDF is heavily reliant on URIs
- RDF++ borrows owl:InverseFunctionalProperty

![Diagram of RDF++ relationships]

Bob Smith

<table>
<thead>
<tr>
<th>owl:sameAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>foaf:mbox</td>
</tr>
</tbody>
</table>

Robert Smith

<table>
<thead>
<tr>
<th>foaf:phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1 800 CALL BOB</td>
</tr>
</tbody>
</table>

bob@email.com

| foaf:mbox |
| rdf:type |

owl:InverseFunctionalProperty
Use cases – “OINK”

Customized interface for photo browsing
Use cases – “OINK”

Customized interface for photo browsing

Automatically generated faceted search tool

Use cases – “OINK”
Use cases – “OINK”

Customized interface for photo browsing
Automatically generated faceted search tool
Automatically generated metadata view

Use cases – “OINK”

Customized interface for photo browsing
Automatically generated faceted search tool
Automatically generated metadata view
Use cases – “OINK”

- Customized interface for photo browsing
- Automatically generated faceted search tool
- Automatically generated metadata view
- Automatically generated query from browsing history
Use Cases – “Jourknow”

• tool for effortless note-taking
 • inspired by our user study on how people take notes and manage information
 • “lightweight” interpretation of user’s notes → structured data (RDF)

• relies on our context-capture infrastructure
 • contextual “cues” (also RDF data) are associated with every note
 • make it easier to find notes afterwards

• versions for PCs, Nokia tablets, Nokia S60 phones
Use Cases – “Virpi”

• speech and dialog based user interfaces
 • dialog behavior based on a rich data model
• mitigation of the “attention-constrained” situations
• ultimate goal: speech access to unlimited domains
 • challenge: currently, speech solutions are carefully crafted and fine-tuned for specific application and data domains
 • we need “best effort” rendering of data in speech also
What’s Missing…?

• we need fine-grained control over data ⇒ “policy-awareness”

• our relations to other people often “define” us, but software applications typically do not make use of these relations ⇒ social awareness

• our observation: policy-awareness is heavily reliant on social awareness
 • typical policies are written in a “social vocabulary”
What Is Our Ultimate Goal?

• (not technology…)
• perhaps we just want to simplify our lives
Questions?

- mailto:ora.lassila@nokia.com

thanks:
- Jamey Hicks (Nokia)
- Bob Iannucci (Nokia)
- Deepali Khushraj (Nokia)
- Mikko Perttunen (University of Oulu)
- Alessandra Toninelli (Università di Bologna)
- Max `Electronic" van Kleek (MIT + Nokia)