Love Thy Data (or: Apps Considered Harmful)

Dr. Ora Lassila

Principal Technologist
Cloud Analytics Team
Nokia Location & Commerce

2012-06-11

Elected Member
Advisory Board
World Wide Web Consortium (W3C)

© 2012 Nokia
Some speaker details

• current and past positions:
 – principal architect with Nokia’s “big data analytics” unit
 – elected member of W3C’s Advisory Board since 1998
 – research positions at Nokia Research, MIT, CMU, HUT
 – venture capitalist, entrepreneur, software engineer

• education:
 – Ph.D (D.Sc) in Computer Science, HUT

• some (perhaps dubious) achievements:
 – co-invented the Semantic Web; co-author of the highest cited article on the topic; co-editor of the original RDF specification
 – software for NASA’s Deep Space 1 (Asteroid Belt in 1998)
 – Grand Prize @ USENIX Intl. Obfuscated C Code Context, 1989
Some speaker details

- current and past positions:
 - principal architect with Nokia’s “big data analytics” unit
 - elected member of W3C’s Advisory Board since 1998
 - research positions at Nokia Research, MIT, CMU, HUT
 - venture capitalist, entrepreneur, software engineer

- education:
 - Ph.D (D.Sc) in Computer Science, HUT

- some (perhaps dubious) achievements:
 - co-invented the Semantic Web
 - co-author of the highest cited article on the topic
 - co-editor of the original RDF specification
 - software for NASA’s Deep Space 1 (Asteroid Belt in 1998)
 - Grand Prize @ USENIX Intl. Obfuscated C Code Context, 1989
This is what I would like to talk about today

1. What is going wrong with information systems development

2. Semantic Web as a possible solution to address some of the above problems

3. A bigger picture of how we could acquire, store, process and use data
Part 1: The Problem
First, let’s define what an “app” is

- **data** + **logic** + **presentation**

- a way to package/deliver/deploy the three
 - in some way, this is an antiquated notion that mostly comes from the needs of developers/publishers (users don’t care)

- we see different kinds of apps, including
 1. perform a specific function (e.g., a “camera” app)
 2. present users with some specific data (e.g., the “NY Times” app)

- specifically with #2, one is left wondering, why not just use the Web…
Issues with data

- typically, data lives in a “silo” and has opaque semantics
 - proprietary data models (semantics)
 - proprietary data formats (syntax)
- this makes the data hard to
 - access (from outside the app)
 - reuse (by other systems)
 - integrate (with data from other sources)
- an app typically “owns” its data, locking users to this particular app
- access/reuse/integration, at best, are engineering endeavors
Issues with logic

- typically, logic is “embedded” in the app and has (at best) opaque semantics
- this makes it hard to
 - access the logic – associate data with this logic except through (and in the context of) the app
 - reuse the logic in some other system
Issues with presentation

- typically, presentation is “fixed”
 -(i.e., decided by developers of the app)
- this makes it hard to
 -flexibly change the presentation per desires and preferences of the user
 -reuse the presentation in some other context
- “packaging” content in a (native) app excludes the good the Web would give us
 -no linking, no bookmarking
 -no accessibility features (unless the platform provides those; cf. reuse of data/content)
- HTML5 to the rescue?
Random examples of bad (and good) apps

• **bad:** NY Times – no linking, bookmarking, text refers to links that are not there

• **bad:** Netflix – similar to the Web site, but offers fewer options in cross-linking, etc.

• **better:** Financial Times – app built using Web standards wins over native

• **better:** Amazon Kindle “cloud reader” – built using Web standards, avoids App Store royalties for in-app purchases

• **better:** Flipboard – allows users to select content via open data
What does all this mean…?

- Each data model is a new “vocabulary” (particularly proprietary models).
- Each service is a new interface with own semantics (assuming logic is accessible).
- Each presentation, separate from others, speaks a new “language” (its own).

Whether we are talking about data, logic or presentation, locking these in an un-reusable “silo” only further fragments our information space.
Perhaps this is in our future?

Whether we are talking about data, logic or presentation, locking these in an un-reusable “silo” only further fragments our information space.
Always focus on data

• apps and systems come and go, but data has **longevity**

• always assume that data
 – comes from multiple sources
 – has multiple “owners”
 – spans multiple application domains

• specifically, focus on things that make **sharing** possible:
 – open formats and models
 – “accessible” semantics
 – also: don’t forget data provenance
Data formats?

• data format (= syntax) is an important issue, but
 – all issues wrt. formats have already been solved
 → no need to reinvent or redefine things
 – once you decide on syntax, you should forget about it

• people seem to think that “format = model”, but this leads to all kinds of issues … also, there is a persistent belief that as long as you understand the syntax, you have “solved the problem” (unfortunately not so)

• people tend to be overly focused on syntax (big mistake)
 – (evidence: current public discussions on how to improve JSON focus on changing the syntax – seriously!)
Data models?

• modern ontological technologies allow the semantics of a domain to be captured in a model (for reuse)

• in many cases, an open (even standard) conceptual model exists for the domain you are interested in
 – but: you typically have to extend it for your own use cases

• checklist if you are defining models:
 – make them extensible, assume people will want to extend
 – assume these models are not used in isolation, but instead they need to interconnect with other models
What establishes (data) semantics?

1. relationship of data to (accessible & declarative) definitions of data types
2. relationship of data to some other data
3. some (procedural) software that “hard-wires” how to process certain kind of data

• all semantics is grounded in the above three
 - note that #1 is recursive
 - the less you have #3, the better
 (and yet, today, most of semantics is captured via #3)
Part 2: The Semantic Web
Characterizing the Semantic Web

• WWW, as conceived, is human-oriented
 – this is both good and bad
 – difficult to automate (particularly unforeseen situations)
 – to employ machines more, we need data

• Semantic Web aims at making it easier to use data in an automated fashion (with implications to interoperability)

• Semantic Web is an “interoperability technology”
 – contrary to many examples about “Web 2.0”, the Semantic Web aims at achieving many things “ad hoc”
 – shared (and accessible) semantics is the key to interoperability

→ Semantic Web aims at using ontologies to model the world
Serendipity defines the Semantic Web

Serendipity in...

interoperability: is it possible to interoperate with systems and services we knew nothing about at design time?

reuse: when information has accessible semantics, this is easier...

integration: can information from various independent sources be combined?
Understanding the Semantic Web vision

• Semantic Web is ultimately about how we want to build information systems, and how we want information technology to serve people

• key challenges:
 1. where does data come from – access to data
 2. how is data processed – the ability to flexibly handle unanticipated situations
 3. how to present data to users – matching the richness of data with the expressiveness of user interaction

• the vision should not be considered in isolation, but as part of a broader vision for information technology
Semantic Web and “culture”

• different domains (of discourse) are their own “cultures” and have languages of their own

• examples from scientific disciplines:
 – biology vs. economics
 – ecology vs. physiology vs. molecular biology
 – proteins: folding vs. expression vs. interactions

• scientific disciplines also use conceptual models (about the world) that are different from others’
 – e.g., different levels of abstraction

• but… “no domain is an island” – domains interconnect
 – museum artifacts → history → geography → travel → …
Semantic Web and “culture”

• Semantic Web was designed to
 – accommodate different points of view
 – be flexible about what it can express – not preferential towards any particular domain or application

• serendipity of combining information in new ways
 – we cannot anticipate all the possible ways in which information is used, combined
 – using Semantic Web formalisms lowers the threshold for “serendipitous reuse”

• a new approach to standardization
 – standardize how things are said, not what is said
Part 3: Future?
“Existential Crisis” of the Semantic Web...

- Semantic Web was conceived as “integration and interoperability” technology
- It is all grown up: the main technical pieces are in place

BUT...

- What about our dream of being able to ontologically model the world?
“Existential Crisis” of the Semantic Web...?

• prescriptive approaches to the world are known to fail—rather, Semantic Web is very much intended to be descriptive

• “global ontology” a bad idea – the broader the scope, the weaker or more complex the resulting ontology

• this is not just a technical challenge...
Hierarchy of information scales (cf. mapping)

<table>
<thead>
<tr>
<th>1. Mapping scalar objects, units of measure, etc.</th>
<th>Mostly syntactic, yet often offered as “semantic transformations” THIS IS NOT A PROBLEM!</th>
</tr>
</thead>
<tbody>
<tr>
<td>• e.g., UNIX date → ISO 8601 date</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Mapping structured objects</th>
<th>Doable, particularly if semantics on both sides are already a good match, still this may lead to “subsetting”, making round-trips difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>• e.g., ovi:Person → facebook:Person</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Mapping entire application data models (or ontologies) onto other applications’ models</th>
<th>Achieving bijective and transitive mappings much harder, also much of the semantics is embodied in applications’ “business logic”</th>
</tr>
</thead>
<tbody>
<tr>
<td>• e.g., Nokia Ovi Services → Facebook</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Mapping entire cultural “contexts”</th>
<th>Is it even possible…? Very difficult, but perhaps not entirely hopeless [Lassila 2006]</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>e.g., US → France → Finland</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>note: finland:Café ≠ france:Café</td>
<td></td>
</tr>
</tbody>
</table>
“Value chain” for data

- Where does “semantic” data come from?

symbolic methods
- reasoning, logic

non-symbolic methods
- data mining
- machine learning

signal processing

raw, noisy data

value

volume

“results”
“Value chain” for data – extended view

structured sources

unstructured sources

reusable data

app₁

app₂

...

appₙ
“Value chain” for data – extended view

What’s important?

- multiple models & domains
 - mapping models & data
 - provenance
- integration (via reasoning)
 - identity

structured sources

unstructured sources

reusable
Conclusions, last words...

• current way of designing, building and delivering information technology to end users is **broken**
 – information is **isolated**, information space is **fragmented**

• Semantic Web is a set of technologies that can be used to address some of the problems
 – however, covering “a lot of ground” is difficult

• we should **focus on data**, understanding that various means to process is it come and go
 – make it possible to **share** data, and other people will come up with new ways of using your data

• **homework**: what about **business models** for all this?
Thank you!

• questions, comments?

• short rants: @gotsemanitics
• long(er) rants: http://www.lassila.org/blog
• contact: ora.lassila@nokia.com

• thanks to: Ian Oliver,
 Mika Mannermaa,
 Mike Champion