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Abstract. Entailment, as defined by RDF’s model-theoretical seman-
tics, is a basic requirement for processing RDF, and represents the kind
of “semantic interoperability” that RDF-based systems have been antic-
ipated to have to realize the vision of the “Semantic Web”. In this paper
we give some results in our investigation of a practical implementation
of the entailment rules, based on the graph-walking query mechanism of
the Wilbur RDF toolkit.

1 Introduction

Resource Description Framework (RDF), the World Wide Web Consortium’s
metadata framework [13], has emerged as a basic building block for the so-called
“Semantic Web” [3]. Semantic interoperability of systems processing RDF is
largely anticipated to emerge because of the implied polymorphism of shared
types and relations as defined using the ontological vocabulary of RDF [4]. Most
RDF-based software toolkits, however, merely concentrate on producing sets of
triples from XML serializations of RDF graphs, and leave the inferential part to
the application programmer. The recently published model-theoretical semantics
for RDF [10] formalizes the notion of inference in RDF, and provides a basis for
computing deductive closures of RDF graphs. Since it can be argued that this is
actually a basic requirement for interoperability of RDF-based systems, support
for this should be readily available to application programmers. Not only would
this ease the task of writing RDF-savvy software, but it would improve the
level of interoperability between these systems. Without this minimal support
for inference, RDF is largely relegated to mere structured data interchange, and
its utility will be seriously jeopardized.

In this paper we will investigate the computational aspects of deductive clo-
sures of RDF graphs, and pursue an implementation based on Wilbur [12, 18],
Nokia Research Center’s open source RDF toolkit. We will implement a “true
RDF processor” by viewing RDF graphs through a node-centric “slot access
function” A, defined as

value ∈ A(frame, slot) ⇐⇒ 〈frame, value〉 ∈ IEXT (I(slot)) (1)

where I(x) is the RDFS-interpretation of a particular graph, and IEXT (y) is
a binary relational extension of a property – i.e., the set of pairs which identify
the arguments for which the property is true – as defined in [10].
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The basic Wilbur frame API [18] provides a simple lookup implementation
for A (we will call it Alookup) where entailment is not considered. If D is the
current database of triples 〈s, p, o〉, then Alookup is basically defined as

value ∈ Alookup(frame, slot) ⇐⇒ 〈frame, slot, value〉 ∈ D (2)

We will demonstrate one approach to implementing A, given an implementation
of Alookup and other query/update facilities for D.

2 Entailment and “RDFS-Closures”

The RDF Model Theory [10] defines entailment via the generation of a deductive
closure from an RDF graph. The closure is a graph consisting of every triple
〈s, p, o〉 that satisfies 〈s, o〉 ∈ IEXT (I(p)). Computing this so-called “RDFS-
closure” consists of two steps:

1. Addition of a set of new (static) triples to the RDF graph in question.
These triples effectively define classes and properties (and their domains and
ranges) in the basic RDF ontological vocabulary. An XML-encoded RDF file
producing these triples is given as an example in Appendix A.

2. Recursive application of forward-chaining rules to generate all legal triples
entailed by the graph in question. These rules could be characterized as
follows:

– Type Rules assign default (“root”) types for resources (rules rdf1, rdfs4a
and rdfs4b in [10]).

– Subclass Rules generate the transitive closures of subclass → class and
instance → class links (rules rdfs7, rdfs8 and rdfs9).

– Subproperty Rules are used to generate the transitive closures resulting
from subproperty → property links. They also propagate property values
up the subproperty chain (rules rdfs5 and rdfs6).

– Domain/Range Rules infer resource types from domain and range as-
signments (rules rdfs2 and rdfs3).

The rules are highly redundant, and their brute-force, exhaustive, iterative ap-
plication of is not a realistic way of computing the closure. For example, given a
graph with only one triple, the rules in step 2 would generate 17 new triples (in
addition to the 19 “static” triples added in step 1), but would also result in 493
attempts to add a redundant triple (i.e., one that was already in the database).
Forward-chaining rule-based techniques – such as RETE [8] – could be used to
make this processing more efficient, but another issue is that the application
of the rules may result in the addition of a large number of new triples in the
database (and that most of these generated results may never be needed). It is
therefore interesting to investigate whether some balance could be found between
computing the closure in advance vs. defining the access function A in such a
manner that it can dynamically (i.e., on-demand) generate correct results.



3 Graph Queries

Wilbur exposes RDF graphs through a node-centric (i.e., “frame system”) API.
As part of this API, the slot access function Alookup supports a query language
which allows complex access paths – expressed as regular expressions of slot
names (i.e., RDF properties) – to be used in place of atomic slot names. The
query language is an extension of the query mechanism of the BEEF frame
system [11] which, in turn, is an efficient implementation of a simplification of
the CRL/SRL path language [9]. It resembles query languages constructed for
semi-structured and graph-based data (e.g., [1, 6, 14, 5]).

Path expressions can take the following forms (expressed here in pseudo-
syntax instead of the native s-expression syntax of Wilbur):

1. Sequence (concatenation in [14]):
seq(e1, . . . , en) matches a sequence of n steps in the graph, consisting of
subexpressions e1, . . . , en.

2. Disjunction (alternation):
or(e1, . . . , en) matches any one of n subexpressions e1, . . . , en. The subex-
pressions are matched in the order they are specified.

3. Repetition (closure):
rep(e) matches the transitive closure of subexpression e; rep+(e) is equivalent
to seq(e, rep(e)).

4. Inverse:
Satisfaction of inv(e) requires the path defined by the subexpression e to be
matched in reverse direction – this is similar to the inversion operator of
GraphLog [5].

5. Value:
val(e) causes the value e to be generated in the matching process, ignoring
any actual slot accesses. It is useful in specifying default values, typically
using the idiom or(path, val(default)).1

6. Wildcards:
The query language supports wildcard “atoms” matching either any arc label
or just RDF container membership properties.

Given a “root” node (i.e., a search start point) and a query expression, Wilbur

provides functions for retrieving the first reachable node, retrieving all reachable
nodes (function Alookup), and determining whether a path exists between two
specified nodes.

Wilbur transforms query expressions into optimized deterministic finite
state automata [2, section 3.9] and uses these to effectively “walk” the underlying
RDF graphs (which are stored as RDF triples in in-core databases with hashed
indices). During traversal, graph nodes are marked with DFA states as in [14,
section 5] except that we do not have to restrict ourselves to simple paths (by
marking the nodes with all applicable states Wilbur is able to find the correct
answer to [14, example 8]).

1 The current implementation cannot satisfy queries of type inv(val(e)).



4 Implementing Closure Generation

We implement closure generation primarily by using graph-walking techniques.
Our approach is based on the following of basic assumptions:

1. Generally, we are willing delay the computation of the closure (even at the
expense of the time eventually spent in the computation) and to trade mem-
ory consumption for time spent in computation.

2. The computational burden is split in two: some of the work is undertaken
during every insert into D (i.e., whenever new triples are asserted), and some
during every access of A.

3. Some features of RDF are more prevalent than others in “typical” data; we
will base the design of the system on this perceived distribution of prevalence:
– subclassing is common,
– subproperty definitions are used but sparsely,
– subproperties of rdf:subPropertyOf are rare.

4. Retractions from D are not considered (so far).

With regard to the dynamic computation of closures, our approach is based
on the Wilbur query language and rewriting access path expressions when
accessing the underlying graph. The definition of the slot access function A now
takes the form

A(frame, path) = Alookup(frame, path′) (3)

where path′ is the path expression path suitably rewritten. We will express the
algorithm as a set of rewrite patterns of the form path → path′.

We will first demonstrate a partial solution: it implements only the type and
subclass rules discussed in section 2. We will then extend this solution to a
complete one by adding support for the subproperty rules.

4.1 Partial Solution

For the two core relations rdf:type and rdfs:subClassOf the rewritten paths
(referring to equation 3) are, correspondingly:

rdf : type→ or(seq(rdf : type, rep(rdfs : subClassOf)), (4)

val(rdfs : Resource))

rdfs : subClassOf→ or(rep(rdfs : subClassOf), (5)

val(rdfs : Resource))

where rewrite pattern 4 says that in order to find all values of rdf:type of an
instance, you first traverse the atomic rdf:type link once, and then the atomic
rdfs:subClassOf link an arbitrary number of times (including zero). Accessing
all values of this relation computes the transitive closure of rdfs:subClassOf,
starting from the designated classes of the instance being queried. Similarily,
rewrite pattern 5 accesses the transitive closure of rdfs:subClassOf. Note that
the effects of pattern 5 are built into pattern 4 so that these rules do not need



to be applied recursively. The disjunctions in both expressions ensure that if the
exhaustive search (i.e., transitive closure computation) fails, a default value is
generated.

Apart from rdf:type and rdfs:subClassOf, other atomic slot names (RDF
properties) are unaffected by the rewrite process, since there is no semantic
theory for them. Complex path expressions are rewritten by traversing them
recursively, rewriting subexpressions.

Since the Wilbur implementation of a “triple database” always loads a
basic “RDF schema” into every newly created database, step 1 of the closure
generation process (in section 2) is implemented by defining the static triples in
this schema (see Appendix A).

Please note that the approach we have taken only makes sense for certain
types of triple database implementations. In a relational database implementa-
tion – given that queries for finding transitive closures cannot be expressed in
relational calculus (see, for example, [14]) – it might make more sense to pop-
ulate the database with additional triples. In an “in-core” implementation like
Wilbur, stepping through the graph has relatively low cost, and therefore the
dynamic approach makes sense, particularly when combined with the potential
memory savings.

4.2 Complete Solution

We can extend the partial solution to provide support for the subproperty rules.
Referring to equation 3, we rewrite access paths as follows: each atomic relation
r is rewritten as

r → or(r1, . . . , rn) (6)

where ri ∈ Alookup(r, rep(inv(or(p1, . . . , pm))))

and where p1, . . . , pm are the relation rdfs:subPropertyOf and all of its defined
subproperties. Please note that this rewriting also applies to all of the atoms of
the results of applying the rewrite patterns 4 and 5. When all values of A are
computed the ordering of ri does not need to be considered. An implementation
might, though, apply some specificity ordering to the values based on the graph
distance of ri to r (note that r1 = r).

The set of subproperties of rdfs:subPropertyOf, P = {pi}, is cached. Each
insert into D where the triple is of the form 〈s, pi, pj〉 where pi ∈ P ∨ pj ∈ P

invalidates and recomputes the cache. The recomputation is effected as follows:
assume Pold is the current value of the cache, and Pnew is the recomputed value
of the cache; then

Pnew = Alookup(rdfs : subPropertyOf, inv(rep(or(p1, . . . , pn)))) (7)

where ∀i ∈ [1, n], pi ∈ Pold

In addition to caching subproperty information of rdfs:subPropertyOf, the im-
plementation offers other opportunities for caching results. Not only could more



of the subproperty information be cached (that is, information about subproper-
ties of all relations, not just rdfs:subPropertyOf), but other results computed
by A could be cached as well.

4.3 About Domain/Range Rules

The domain and range constraints of RDF Schema were originally introduced to
allow RDF data to be validated (e.g., by a metadata editor). The domain/range
rules of the Model Theory make it impossible to use RDF Schema for this
purpose since they effectively treat domain and range generatively and not re-
strictively – and these are the only validation constraints of the language. We
believe these rules should not be part of the Model Theory in the first place.

If one did want to implement the domain/range rules using the access path
rewriting technique, one would have to add additional triples to the database
during insertions. For example, if for every triple 〈s, p, o〉 inserted into D one
would insert the triples 〈o, rr, p〉 and 〈s, dr, p〉 into D, one could rephrase the
rewrite pattern 4 as follows:

rdf : type→ or(seq(rdf : type, rep(rdfs : subClassOf)), (8)

seq(rr, rep(or(p1, . . . , pm)), rdfs : range),

seq(dr, rep(or(p1, . . . , pm)), rdfs : domain)

val(rdfs : Resource))

where p1, . . . , pm are the relation rdfs:subPropertyOf and all of its subproper-
ties. This approach, however, would lead to an expansion of D and would thus
work against the goals for this implementation in general.

4.4 Implementation Summary

The following table summarizes how our approach implements the rules of the
Model Theory:

Rule Implementation
rdf1 during insertions to D

rdfs2 not implemented (see section 4.3)
rdfs3 not implemented (see section 4.3)
rdfs4a rewrite pattern 4 (default clause)
rdfs4b rewrite pattern 4 (default clause)
rdfs5 rewrite pattern 6
rdfs6 rewrite pattern 6 + caching during insertions to D

rdfs7 rewrite pattern 5 (default clause)
rdfs8 rewrite pattern 5
rdfs9 rewrite pattern 4



5 Future Work

The complexity of path queries has been studied extensively (for example [16,
17, 14] just to name a few). Even though the general problems tend to be NP-
complete [14], several restricted variations of the problem have lower complexity.
Most of the graph processing required for our solution is reduced to the com-
putation of transitive closures which can be accomplished in polynomial time
[17]. Our future plans include not only analyzing the complexity of the current
solution but also comparing it with others, such as generative forward-chaining
rule-based approaches – e.g., CWM [19] – and backward-chaining theorem prov-
ing approaches – e.g., Euler [20] as well as SiLRI and TRIPLE [7, 15].

Additional future work on this system will include dealing with retractions
from D (for practical completeness – this will affect how rules rdf1 and rdfs6 are
implemented), getting statistical data to back up the assumptions made of the
distribution of various RDF features in “real-world” RDF data, and extending
the underlying Wilbur system to deal with certain types of queries that include
the pattern inv(val(r)).

6 Conclusions

“Semantic interoperability” of RDF-based systems has long been anticipated to
materialize because of the polymorphism of shared types and relations as de-
fined by the RDF Schema specification, but most RDF-based software packages
merely concentrate on producing sets of triples from XML serializations of RDF
graphs and leave the inferential part to the application programmer. The model
theory for RDF formalizes this notion of inference in RDF. We have argued
that the inferential mechanism is a basic minimum requirement for interoper-
ability of RDF-based systems, and support for this should be readily available
for application programmers. Not providing this support may compromise the
interoperability between RDF-based systems.

The “true RDF processor” presented in this paper provides a “slot access
function” which effectively allows the underlying graph to be viewed as if its
RDFS-closure had been generated. RDF-based applications, if written using a
toolkit like this, would not have to worry about the inferential implications
specified by the standard, and would thus enable true interoperability with other
similar systems.
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A Basic RDF and RDFS Schema

This RDF document provides the initial (static) triples required by the RDFS
closure generation algorithm (see [10, section 6]).

<?xml version="1.0"?>

<!DOCTYPE uridef [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;">

<rdfs:Class rdf:about="&rdfs;Resource"/>

<rdfs:Class rdf:about="&rdf;Property"/>

<rdfs:Class rdf:about="&rdfs;Class"/>

<rdf:Property rdf:about="&rdf;type">

<rdfs:domain rdf:resource="&rdfs;Resource"/>

<rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>

<rdf:Property rdf:about="&rdfs;subClassOf">

<rdfs:range rdf:resource="&rdfs;Class"/>

<rdfs:domain rdf:resource="&rdfs;Class"/>

</rdf:Property>

<rdf:Property rdf:about="&rdfs;subPropertyOf">

<rdfs:range rdf:resource="&rdf;Property"/>

<rdfs:domain rdf:resource="&rdf;Property"/>

</rdf:Property>

<rdf:Property rdf:about="&rdfs;range">

<rdfs:range rdf:resource="&rdfs;Class"/>

<rdfs:domain rdf:resource="&rdf;Property"/>

</rdf:Property>

<rdf:Property rdf:about="&rdfs;domain">

<rdfs:range rdf:resource="&rdfs;Class"/>

<rdfs:domain rdf:resource="&rdf;Property"/>

</rdf:Property>

<rdfs:Class rdf:about="&rdfs;Literal"/>

</rdf:RDF>



B Slot Access Example

Assume a simple example with instances, classes, subclasses and a subproperty
for rdf:type, as defined by the following RDF document:

<?xml version="1.0"?>

<!DOCTYPE uridef [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY x "http://www.lassila.org/schemata/Example#">

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:x="&x;">

<rdfs:Property rdf:about="&x;type">

<rdfs:subPropertyOf rdf:resource="&rdf;type"/>

</rdfs:Property>

<rdfs:Class rdf:about="&x;A">

<rdfs:subClassOf>

<rdfs:Class rdf:about="&x;B"/>

</rdfs:subClassOf>

</rdfs:Class>

<rdf:Description rdf:about="&x;foo">

<x:type rdf:resource="&x;A"/>

</rdf:Description>

</rdf:RDF>

When the above document is loaded into Wilbur’s database it will produce the
following 6 triples:

1 : 〈x : type, rdf : type, rdfs : Property〉

2 : 〈x : type, rdfs : subPropertyOf, rdf : type〉

3 : 〈x : A, rdf : type, rdfs : Class〉

4 : 〈x : A, rdfs : subClassOf, x : B〉

5 : 〈x : B, rdf : type, rdfs : Class〉

6 : 〈x : foo, rdf : type, x : A〉

Then, calling the new access function A(x : foo, rdf : type) will yield the result
{x : A, x : B, rdfs : Resource}. The execution of the function call will result in
the following lower-level calls:

1 :







Alookup(rdf : type, inv(rdfs : subPropertyOf)) → {x : type}
Alookup(x : type, inv(rdfs : subPropertyOf)) → {}
Alookup(rdfs : subClassOf, inv(rdfs : subPropertyOf)) → {}



2 :























Alookup(x : foo, rdf : type) → {}
Alookup(x : foo, x : type) → {x : A}
Alookup(x : A, rdfs : subClassOf) → {x : B}
Alookup(x : B, rdfs : subClassOf) → {}
Alookup(x : B, val(rdfs : Resource)) → {rdfs : Resource}

Step 1 represents the rewriting step for rdf:type: the accesses to Alookup are the
result of the addition of triple 2 above having invalidated the sub-subproperty
cache (subsequent similar calls would be able to rely on the cached information).
Step 2 represents the traversal of the rewritten path.


