Love Thy Data (or: Apps Considered Harmful)

Dr. Ora Lassila

Principal Technologist
Cloud Analytics Team
Nokia Location & Commerce

2012-06-11

Elected Member

& Advisory Board

World Wide Web Consortium (W3C)

Some speaker details

- current and past positions:
 - -principal architect with Nokia's "big data analytics" unit
 - -elected member of W3C's Advisory Board since 1998
 - -research positions at Nokia Research, MIT, CMU, HUT
 - -venture capitalist, entrepreneur, software engineer
- education:
 - -Ph.D (D.Sc) in Computer Science, HUT
- some (perhaps dubious) achievements:
 - -co-invented the Semantic Web; co-author of the highest cited article on the topic; co-editor of the original RDF specification
 - -software for NASA's Deep Space 1 (Asteroid Belt in 1998)
 - -Grand Prize @ USENIX Intl. Obfuscated C Code Context, 1989

Some speaker details

- current and past positions:
 - -principal architect with Nokia's "big data
 - -elected member of W3C's Advisor
 - -research positions at Nokia E
 - -venture capitalist, entr
- education:
 - -Ph.D (D
- son
- WARNING: OPINIONATED TAIL tic Web; co-author of the highest cited ; co-editor of the original RDF specification
 - ASA's Deep Space 1 (Asteroid Belt in 1998)
 - ze @ USENIX Intl. Obfuscated C Code Context, 1989

This is what I would like to talk about today

- What is going wrong with information systems development
- 2. Semantic Web as a possible solution to address some of the above problems
- 3. A bigger picture of how we could acquire, store, process and use data

Part 1: The Problem

First, let's define what an "app" is

data

logic

presentation

- data + logic + presentation
- a way to package/deliver/deploy the three
 - in some way, this is an antiquated notion that mostly comes from the needs of developers/publishers (users don't care)
- we see different kinds of apps, including
 - 1. perform a specific function (e.g., a "camera" app)
 - 2. present users with some specific data (e.g., the "NY Times" app)
- specifically with #2, one is left wondering, why not just use the Web...

Connecting People

Issues with data

data

logic

presentation

- typically, data lives in a "silo" and has opaque semantics
 - -proprietary data models (semantics)
 - -proprietary data formats (syntax)
- this makes the data hard to
 - -access (from outside the app)
 - -reuse (by other systems)
 - -integrate (with data from other sources)
- an app typically "owns" its data, locking users to this particular app
- access/reuse/integration, at best, are engineering endeavors

Issues with logic

data

logic

presentation

- typically, logic is "embedded" in the app and has (at best) opaque semantics
- this makes it hard to
 - -access the logic associate data with this logic except through (and in the context of) the app
 - -reuse the logic in some other system

Issues with presentation

data

logic

presentation

- typically, presentation is "fixed"
 - -(i.e., decided by developers of the app)
- this makes it hard to
 - -flexibly change the presentation per desires and preferences of the user
 - -reuse the presentation in some other context
- "packaging" content in a (native) app excludes the good the Web would give us
 - -no linking, no bookmarking
 - -no accessibility features (unless the platform provides those; cf. reuse of data/content)
- HTML5 to the rescue?

Random examples of bad (and good) apps

data

logic

presentation

- bad: NY Times no linking, bookmarking, text refers to links that are not there
- bad: Netflix similar to the Web site, but offers fewer options in cross-linking, etc.
- better: Financial Times app built using
 Web standards wins over native
- better: Amazon Kindle "cloud reader" –
 built using Web standards, avoids App
 Store royalties for in-app purchases
- better: Flipboard allows users to select content via open data

Connecting People

What does all this mean...?

Whether we are talking about data, logic or presentation, locking these in an un-reusable "silo" only further fragments our information space

Always focus on data

- apps and systems come and go, but data has longevity
- always assume that data
 - -comes from multiple sources
 - -has multiple "owners"
 - -spans multiple application domains
- specifically, focus on things that make sharing possible:
 - -open formats and models
 - -"accessible" semantics
 - -also: don't forget data provenance

Data formats?

- data format (= syntax) is an important issue, but
 - -all issues wrt. formats have already been solved
 - → no need to reinvent or redefine things
 - -once you decide on syntax, you should forget about it
- people seem to think that "format = model", but this leads to all kinds of issues ...also, there is a persistent belief that as long as you understand the syntax, you have "solved the problem" (unfortunately not so)
- people tend to be overly focused on syntax (big mistake)
 - -(evidence: current public discussions on how to improve JSON focus on changing the syntax seriously!)

Data models?

- modern ontological technologies allow the semantics of a domain to be captured in a model (for reuse)
- in many cases, an open (even standard) conceptual model exists for the domain you are interested in
 - -but: you typically have to extend it for your own use cases

- checklist if you are defining models:
 - -make them extensible, assume people will want to extend
 - -assume these models are not used in isolation, but instead they need to **interconnect** with other models

What establishes (data) semantics?

- 1. relationship of data to (accessible & declarative) definitions of data types
- 2. relationship of data to some other data
- 3. some (procedural) software that "hard-wires" how to process certain kind of data
- all semantics is grounded in the above three
 - note that #1 is recursive
 - the less you have #3, the better
 (and yet, today, most of semantics is captured via #3)

Part 2: The Semantic Web

Characterizing the Semantic Web

- WWW, as conceived, is human-oriented
 - -this is both good and bad
 - -difficult to automate (particularly unforeseen situations)
 - -to employ machines more, we need data

- Semantic Web aims at making it easier to use data in an automated fashion (with implications to interoperability)
- Semantic Web is an "interoperability technology"
 - -contrary to many examples about "Web 2.0", the Semantic Web aims at achieving many things "ad hoc"
 - -shared (and accessible) semantics is the key to interoperability
 - → Semantic Web aims at using ontologies to model the world

Serendipity defines the Semantic Web

Serendipity in...

interoperability: is it possible to interoperate with

systems and services we knew

nothing about at design time?

reuse: when information has accessible

semantics, this is easier...

integration: can information from various

independent sources be

combined?

Understanding the Semantic Web vision

- Semantic Web is ultimately about how we want to build information systems, and how we want information technology to serve people
- key challenges:
 - 1. where does data come from access to data
 - 2. how is data processed the ability to flexibly handle unanticipated situations
 - 3. how to present data to users matching the richness of data with the expressiveness of user interaction
- the vision should not be considered in isolation, but as part of a broader vision for information technology

Semantic Web and "culture"

- different domains (of discourse) are their own "cultures" and have languages of their own
- examples from scientific disciplines:
 - -biology vs. economics
 - -ecology vs. physiology vs. molecular biology
 - -proteins: folding vs. expression vs. interactions
- scientific disciplines also use conceptual models (about the world) that are different from others'
 - -e.g., different levels of abstraction
- but... "no domain is an island" domains interconnect
 - -museum artifacts → history → geography → travel → ...

Semantic Web and "culture"

- Semantic Web was designed to
 - -accommodate different points of view
 - -be flexible about **what** it can express not preferential towards any particular domain or application
- serendipity of combining information in new ways
 - -we cannot anticipate all the possible ways in which information is used, combined
 - -using Semantic Web formalisms lowers the threshold for "serendipitous reuse"
- a new approach to standardization
 - -standardize how things are said, not what is said

Part 3: Future?

"Existential Crisis" of the Semantic Web...?

- Semantic Web was conceived as "integration and interoperability" technology
- it is all grown up: the main technical pieces are in place

BUT...

 what about our dream of being able to ontologically model the world?

"Existential Crisis" of the Semantic Web...?

- prescriptive approaches to the world are known to fail
 rather, Semantic Web is very much intended to be descriptive
- "global ontology" a bad idea the broader the scope, the weaker or more complex the resulting ontology
- this is not just a technical challenge...

Hierarchy of information scales (cf. mapping)

- **1.** Mapping **scalar objects**, units of measure, etc.
 - e.g., UNIX date → ISO 8601 date
- 2. Mapping structured objects
 - e.g., ovi:Person → facebook:Person
- 3. Mapping entire application data models (or ontologies) onto other applications' models
 - e.g., Nokia Ovi Services → Facebook

Mostly syntactic, yet often offered as "semantic transformations"

THIS IS NOT A PROBLEM!

Doable, particularly if semantics on both sides are **already a good match**, still this may lead to "subsetting", making round-trips difficult

Achieving bijective and transitive mappings much harder, also much of the semantics is embodied in applications' "business logic"

•

- N | Mapping entire cultural "contexts"
 - e.g., US → France → Finland
 - note: finland:Café ≠ france:Café

Is it even possible...? Very difficult, but perhaps not entirely hopeless [Lassila 2006]

"Value chain" for data

"Value chain" for data – extended view

"Value chain" for data – extended view

Conclusions, last words...

- current way of designing, building and delivering information technology to end users is broken
 - -information is isolated, information space is fragmented
- Semantic Web is a set of technologies that can be used to address some of the problems
 - -however, covering "a lot of ground" is difficult
- we should focus on data, understanding that various means to process is it come and go
 - -make it possible to **share** data, and other people will come up with new ways of using your data
- homework: what about business models for all this?

Thank you!

questions, comments?

• short rants: @gotsemantics

• long(er) rants: http://www.lassila.org/blog

• contact: ora.lassila@nokia.com

thanks to: Ian Oliver,

Mika Mannermaa,

Mike Champion

