Why limit yourself to LPG when you can do RDF, too

Dr. Ora Lassila
Principal Technologist
Amazon Neptune

© 2022, Amazon Web Services, Inc. or its Affiliates.
Why limit yourself to RDF when you can do LPG, too

Dr. Ora Lassila
Principal Technologist
Amazon Neptune
Who am I?

Principal Technologist in the Amazon Neptune graph database team

Co-chair of the W3C RDF-star Working Group (2022-)

Co-author of the original RDF specification (1997-1999)

Co-author of the seminal paper on the Semantic Web (2001)

Recipient of the 1st ISWC “10-year award” (2011)

W3C Fellow (1996-1997)

Elected member of the W3C Advisory Board (1998-2013)

Grand Prize Winner, Usenix Obfuscated C Code Contest (1989)

Education: Ph.D CS, Helsinki University of Technology
Game plan

1. Knowledge graphs, interoperability, and the Semantic Web
2. RDF vs. LPG
3. Project OneGraph
A brief history of graphs and ontologies

1730s: Graph theory (Euler)

1950s and onwards: Graphs as the essential underpinning of computer science

1960s: Social networks, “small-world experiment”, Erdős number (Milgram et al)

1960s-1970s: Network databases (CODASYL), semantic networks (Quillian et al)

1997 and onwards: The Semantic Web, RDF, OWL, etc. (Lassila et al)

Today: Modern knowledge graphs and graph databases

3rd Century BCE: Categories & logic (Aristotle)

1730s: Taxonomical classification of plants and animals (Linnaeus)

1870s: Library classification (Dewey)

1900: Semantics, ontology and logic (Husserl)

1970s-1990s: Predicate logic as the foundation of Knowledge Representation (Hayes et al)
RDF, SPARQL, the Semantic Web, and Knowledge Graphs

The W3C “Semantic Web stack” forms the basis of many modern knowledge graph systems

• **RDF**: First graph standard (1999)
• **SPARQL**: First graph query language standard (2004)

These standards were intended for data interchange

Knowledge graphs are often seen as a “way out of the silos” for data

however...
Won’t get fooled again...

“Meet the new silos... just like the old silos”

Old silos: Single-application -controlled data, at best behind a bespoke API

New silos: Single-purpose knowledge graphs built without interoperability and interlinking in mind
You are (still) here
Why do we need interoperability (and what does it mean)?

Common format enables information interchange

Common query language enables interworking and frees users from “lock-in”

BUT...

We also need common, shared **semantics**

Special attention should be paid to how we **identify** things

Standards or technologies not designed for sharing and interchange of semantics should be rejected off-hand
 - because they simply just reinforce the old “silo mindset”
A graph is a graph is a graph...?

For knowledge graphs, you typically need what the Semantic Web technologies offer.

Other graph applications often treat the graph as a very large, potentially complex data structure.
A graph is a graph is a graph...?

For knowledge graphs, you typically need what the Semantic Web technologies offer.

Other graph applications often treat the graph as a very large, potentially complex data structure.

“The Rift”

Graph as a **logical representation** vs. graph as a **data structure**

- **RDF (and friends)**
- **LPGs**
RDF or LPG…?

This question (“the rift”) plagues the graph community

With Amazon Neptune, we chose to support both, to give customers a choice

• unfortunately, they have to choose (and this causes confusion)
• the choice limits what you can do (e.g., what query language you can use)

Both graph models have their pros and cons…
RDF

<table>
<thead>
<tr>
<th>Good features</th>
<th>Missing features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Graph merging</td>
<td>• Programmer “friendliness”, good integration with programming languages</td>
</tr>
<tr>
<td>• Strong, global identifiers</td>
<td>• Usable composite datatypes</td>
</tr>
<tr>
<td>• Schema/ontology language</td>
<td>• Path discovery</td>
</tr>
<tr>
<td>• Self-describing data</td>
<td>• Recursive queries</td>
</tr>
<tr>
<td>• Standardized interchange formats</td>
<td>• Composable queries</td>
</tr>
<tr>
<td>• Formal semantics that support reasoning</td>
<td></td>
</tr>
<tr>
<td>• Federated queries</td>
<td></td>
</tr>
</tbody>
</table>
Good features
- Graph merging
- Strong, global identifiers
- Schema/ontology language
- Self-describing data
- Standardized interchange formats
- Formal semantics that support reasoning
- Federated queries

Missing features
- Programmer “friendliness”, good integration with programming languages
- Usable composite datatypes
- Path discovery
- Recursive queries
- Composable queries
Project “OneGraph”

What if we could have the “best of both worlds”…?

- use all of the good features of RDF (and SPARQL) with LPGs, without having to reinvent them (and vice versa)
- no more complaints that RDF does not have “edge properties”
- mitigate SPARQL’s lack of path discovery
- Gremlin queries over RDF! (GQL over RDF, too)
- ontologies for LPG
- reasoning…
- etc.

Big goal: “graph interoperability” (i.e., no more confusion)
Project “OneGraph”

OneGraph (1G) is a metamodel that “unifies” RDF, RDF-star, and LPGs

Each of the existing metamodels is a “lower-dimensional view” of 1G data

Consequently, roundtrips:
 • RDF \rightarrow 1G \rightarrow RDF: lossless, but
 • 1G \rightarrow RDF \rightarrow 1G: not necessarily lossless
 • etc.

There are several technical and definitional hurdles to accomplish this
 • the main practical challenge is that RDF and LPGs are used differently
 • more information: semantic-web-journal.net/system/files/swj3273.pdf
Good features

• Graph merging
• Strong, global identifiers
• Schema/ontology language
• Self-describing data
• Standardized interchange formats
• Formal semantics that support reasoning
• Federated queries

More good features

• Programmer “friendliness”, good integration with programming languages
• Usable composite datatypes
• Path discovery
• Recursive queries
• Composable queries

Missing features
Thank you!

Contact:
• ora@amazon.com
• Twitter: @oralassila