
Our Proposal
Dedicated datatypes for capturing lists and maps as
literals; and corresponding extensions of SPARQL.

● Value space: sequences/functions over RDF terms
 and null (with some limitations)

● Lexical forms: Turtle based, including shorthands for literals;
 shorthands for nesting; superset of JSON

● Various functions to operate on these literals in SPARQL expressions
 SELECT ?s (cdt:get(?list,1) AS ?v) SELECT ?list WHERE {
 { ?s :performance ?list . BIND(1 AS ?x)
 FILTER(cdt:size(?list) > 10) } BIND(cdt:List(?x, ?x+1, ?x+2) AS ?list) }

● Aggregation function to produce such composite values in SPARQL
 SELECT (FOLD(?name ORDER BY ?name) AS ?list) SELECT (FOLD(?p,?name) AS ?map)
 WHERE { ?p rdf:type foaf:Person . WHERE { ?p rdf:type foaf:Person .
 ?p foaf:name ?name . } ?p foaf:name ?name . }

● New SPARQL operator to unfold composite values into their individual components
 SELECT * { ?s :performance ?list .
 UNFOLD(?list AS ?elm, ?pos) }
 ORDER BY ?s ?pos

Datatypes for Lists and Maps in RDF Literals
Olaf Hartig1, 2 Gregory Todd Williams1 Michael Schmidt1 Ora Lassila1 Carlos Manuel Lopez Enriquez1 Bryan Thompson1

1Amazon Neptune Team, Amazon Web Services, Seattle, WA, USA 2Linköping University, Linköping, Sweden

Resources
● Formal specification of the approach
● Comprehensive test suite that covers

all aspects of the specification
● Two complete open source implementations

integrating support for the approach into the
RDF programming frameworks
Apache Jena (Java) and
Attean (Perl)

What is the Problem?
In contrast to many other popular data representation forms and their
query languages, RDF and SPARQL lack built-in support for generic types of
composite values such as lists and maps. Instead, RDF introduces so-called
containers and collections, which allow users to model composite values
through a dedicated vocabulary on top of the core data model. Drawbacks:
● verbose representation, bloats up storage footprint
● cumbersome (even tricky) to query such containers & collections in SPARQL
● manipulation of such containers & collections in SPARQL even more complex

:srv71 :performance _:l1.

_:l1 rdf:type rdf:List .

_:l1 rdf:first 42.5 .

_:l1 rdf:rest _:l2 .

_:l2 rdf:first 41.9 .

_:l2 rdf:rest rdf:nil .

Listing: Example of a list of two
 values as an RDF collection.

:srv71 :performance "[42.5, 41.9]"^^cdt:List .

Listing: The same list as above, captured as an RDF literal.

 "['hello'@en, <http://liu.se>]"^^cdt:List

 "{ 'id': 42, 'x': [4,null,7] }"^^cdt:Map

repospec

ASSET
AVAILABLE

Broad Range of Use Cases
● Augmenting entities in a Knowledge Graph directly

with corresponding embedding vectors
● Maintaining and operating over lists of all kinds; e.g.,

public transport timetables, series of measurements
● More direct interoperability between RDF graphs and

Property Graphs that contain composite values
● Integration with other data ecosystems; e.g., queries

over JSON and CSV data expressed directly within
SPARQL, creation of JSON and CSV from SPARQL

● SPARQL as a bidirectional mapping language to
describe mappings between RDF, JSON, and CSV

	Page 1

