
All the “Vs” of big (graph) data
Dr. Ora Lassila

Principal Technologist, Amazon Neptune
Co-chair, W3C RDF-star WG

former Chief Scientist, Nokia Venture Partners
former W3C Fellow

Semantic Arts’ 7th Annual Data-Centric Architecture Forum, June 2025



Who am I, and what have I done?

Current:
Principal Technologist, Amazon Neptune (AWS)
Co-chair, W3C RDF-star Working Group

Past:
State Street, Pegasystems, Nokia,
MIT, CMU, Helsinki University of Technology, …

Education:
Ph.D (D.Sc) CS & AI, Helsinki University of Technology

Semantic Web vision
RDF
KR for NASA Deep Space 1
2 daughters
43k+ citations
Grand Prize of Usenix 
Obfuscated C Code Contest



This talk is about scalability

But the real challenge of scalability is 
not where you think it is



Setting the stage



“Big data”

The term was coined in the 1990s
Originally “3 Vs” (volume, velocity, variety)
• later, many more “Vs”…

Bottom line is that much of the good
that we knew about data & databases
was sacrificed for the “Vs”

Seriously…?



What happened?

Rise of “NoSQL” databases
Features like schema, referential integrity, joins, etc., all moved from the 
database to the application code (or were more or less ditched)

1. implemented ad hoc

2. schema implicit in procedural code
à no real opportunity to manage complex models

Result: more velocity (with caveats), more volume (maybe), but
less variety (or at least no good way to handle variety)



What happened?

Rise of “NoSQL” databases
Features like schema, referential integrity, joins, etc., all moved from the 
database to the application code (or were more or less ditched)

1. implemented ad hoc

2. schema implicit in procedural code
à no real opportunity to manage complex models

Result: more velocity (with caveats), more volume (maybe), but
less variety (or minimally, no good way to handle variety)

REALLY BAD IDEA:



What about relational?

The world does not always fit in rigid tables

 or

You end up with millions of columns



What about relational?

The world does not always fit in rigid tables

 or

You end up with millions of columns
Hard to understand, hard to maintain, hard to evolve
• also: complex queries (too many joins, etc.)

and



Enter graphs and ontologies



Some background: Graphs, ontologies, RDF, etc.

Graphs have been around since the 1730s
Ontologies have been around since the very early 1900s
RDF emerged in the late 1990s, but should be seen as coming from the 
frame-based KR tradition (since the 1970s)
Long despised by database folks
• the relational algebra is not particularly useful for optimizing this stuff
• also: the database people and KR people did not talk to one another…



Introduction to RDF

Simple KR language, cornerstone of the “Semantic Web stack”
Widely adopted and deployed
• about half of all Web pages contain some embedded RDF
• all Adobe documents contain some RDF
• etc.

“RDF has turned out to be the most catastrophically successful 
failure there is.”  – Charles Ivie (AWS)



Does RDF scale? (The first two ”Vs”)

(RDF decomposes into “triples”, effectively these are the graph edges)

Early Semantic Web conferences had a “billion triple challenge”
Several years ago, AllegroGraph announced they had ingested 1T triples
Single Amazon Neptune cluster now scales up to about 0.5T triples



Here is one example of how RDF scales…

Inventory knowledge graph of 
Amazon Fulfillment is used to
• investigate fulfillment processes
• investigate lost & found -issues
• improve precision of product recalls

Extends the PROV-O ontology: 
models the end-to-end logistics 
process as a form of provenance

Runs on multiple (federated) 
Neptune clusters
Size:

1T+ triples
4B new triples per day

Queries (p95):
< 50 ms to find a node
< 1 s to retrieve the whole path



Here is one example of how RDF scales…
Runs on multiple (federated) 
Neptune clusters
Size:

1T+ triples
4B new triples per day

Queries (p95):
< 50 ms to find a node
< 1 s to retrieve the whole path

I think we have the first two “Vs” covered!

But what about the other “Vs”…?



But what about the other “Vs”…?



Variety
Veracity
Value

Viability, Variability, Viscosity, Validity, Vulnerability, Volatility, blah blah blah…



Variety RDF and ontologies are well suited to data integration
Veracity Complex models and queries supported
Value Ontologies make complex data easier to understand

 Interoperability tends to increase variety
 …and variety implies complexity



Variety
Veracity Easy to capture lineage and provenance in RDF
Value Logical inference supports explainable AI
 Declarative, accessible ontologies promote openness



Variety
Veracity
Value I’d rather talk about cost here… (the cost of not using the 

Semantic Web stack, that is)
• cost of maintenance
• cost of technical debt
• cost of redundancy
• etc.



Variety
Veracity
Value

These do not start with a “V”, 
but should be included:
Complexity
Interoperability

Semantics as the enabler



Semantics, and what is that anyway?



Semantics

Overused word, thrown around liberally
Most people do not really know what
the term means
• (cue scene from “The Princess Bride”)

1. Separating formal semantics from one’s own (human) interpretation?
2. Where does semantics come from?



Separating formal semantics from one’s own interpretation

Example: JSON
• people say “my data is just JSON” and “JSON is easy to understand”
• but JSON has no semantics (at all), so any “understanding” is based on some 

external semantics (typically not declarative or accessible)



“JSON is easy to understand”
{
 “first name”: “Ora”,
 “family name”: “Lassila”,
 “degree”: “Ph.D”,
 “place of birth”: “Helsinki”,
 “hobbies”: [ “photography”, “scale models” ]
}

Now you are going to tell me you “understand” this data?



“JSON is easy to understand”
{
 “etunimi”: “Ora”,
 “sukunimi”: “Lassila”,
 “tutkinto”: “TKT”,
 “syntymäpaikka”: “Helsinki”,
 “harrastukset”: [ “valokuvaus”, “pienoismallit” ]
}

Do you still understand it? And will a machine understand it?

Ostensibly this JSON fragment 
has the same “meaning” as the 

previous one.



Understandability of JSON is a fallacy



Where does semantics come from?

1. Relationship of data to definitions (ontologies)
2. Relationship of data to some other data

3. Software that interprets data   ß “grounding”

We want more of #1 and #2, and (much) less of #3

I see this as a requirement to truly get to “data-centricity”



RDF vs. “the other kinds of graphs”



RDF vs. Labeled Property Graphs

Totally different origins:
• RDF: knowledge representation, Web, open world
• LPG: databases, software development, closed world

RDF is a representation language whereas LPGs are data structures
• if you use RDF as a mere data structure, you are “doing it wrong”
• (and mind you, RDF is only incidentally a graph)

LPGs have good uses, but knowledge graphs should not be one of them



RDF vs. Labeled Property Graphs

A graph is a graph is a graph? *
True, but not really relevant
• similarly, you could say any Turing-complete programming language is just 

like any other Turing-complete programming language
• you could build your KG system using LPG, but why?

* (with apologies to Gertrude Stein)



Features of RDF you end up reinventing if you use LPGs

Strong, global identifiers
Predictable (and easy) graph merging
Standardized interchange formats
Schema language (for defining ontologies)
Reasoning
Federated queries



Features of RDF you end up reinventing if you use LPGs

Strong, global identifiers
Predictable (and easy) graph merging
Standardized interchange formats
Schema language (for defining ontologies)
Reasoning
Federated queries

in
te
ro
pe
ra
bi
lit
y

co
m
pl
ex
ity



Ora’s Rule of Knowledge Graph Implementation

“Any sufficiently sophisticated knowledge 
graph system built using an LPG contains 

an ad hoc, informally-specified, bug-ridden 
implementation of half of RDF.” *

* (with apologies to Philip Greenspun re: 
“Greenspun’s Tenth Rule” – look it up)



Could there be better alignment between RDF and LPGs?

“Project OneGraph” (AWS)
• practical goals: common storage & query language interoperability
• we already have openCypher over RDF à mixed use of RDF and LPG data
• a proposal for LPG-style composite datatypes for RDF (via datatypes)

RDF 1.2 (formerly “RDF-star”)
• easier use of reification finally gives us “edge properties”
• RDF 1.2 is more expressive than LPGs (e.g., edges between edges)
• particularly well suited for use cases with cross-cutting aspects



Finale (pronounced “finally” ;-)



Did we miss something? What else needs to scale?

We have speed and size (velocity and volume) covered
If we really apply the Semantic Web stack we can conquer variety
• (including challenges of complexity and interoperability)
• this should also take care of the “things not strings” issue

So what else?



USER EXPERIENCE!



User interfaces do not scale (vis-à-vis expressivity)

We have extremely expressive data, but UI expressivity lags behind
• tabular views dominate
• graph visualization seldom scales, and may not be the answer either
• (also, I am not convinced that LLMs are the answer)

For years I (erroneously) convinced myself that this is not a problem 
specifically the Semantic Web community should fix
• I am not all that convinced anymore…



My “call to arms” for you:

Velocity and volume already covered
We have solutions for variety, complexity and interoperability

Please make all this technology easier to use!
• I see advances that make developers’ lives easier
• I do not see the same for end users (instead, we are told that AI solves all)



Summary

Big Data & demise of well-established data techniques was a Bad Idea

3Vs:

• generally, volume and velocity are not a problem anymore

• with increased complexity, the relational approach falls short, but ontologies 
and graphs hold a lot of promise à variety covered

I see user interaction and user interfaces as the “final frontier”



My colleagues in the Neptune team

Tanya Shigaeva, Juan Sequeda, 
Lauren Lassila, Mara Owens

Adrian Gschwend and all the 
members of the W3C RDF-star WG

Many thanks to:Thank you! Any questions?

Contact: ora@amazon.com


