All the "Vs" of big (graph) data

Dr. Ora Lassila

Principal Technologist,
Co-chair,
former Chief Scientist, Nokia Venture Partners
former W3C Fellow

Semantic Arts' 7t Annual Data-Centric Architecture Forum, June 2025

dWS

\-/‘7

Who am |, and what have | done?

Current: Semantic Web vision

Principal Technologist, Amazon Neptune (AWS) RDF

Co-chair, W3C RDF-star Working Group

KR for NASA Deep Space 1

Past:

State Street, Pegasystems, Nokia, 2 daughters

MIT, CMU, Helsinki University of Technology, ... A3k+ citations
Education: Grand Prize of Usenix

Ph.D (D.Sc) CS &Al, Helsinki University of Technology ~ Obfuscated C Code Contest

adWS

\-/‘7

This talk is about scalability

But the real challenge of scalability is
not where you think it is

dWS

Setting the stage

dWS

“Big data”

The term was coined in the 1990s

Originally “3 Vs" (volume, velocity, variety)

* later, many more "Vs"... Seriously...?

Medium Q seacn

. . The 17 V’s of Big Data
Bottom line is that much of the good

that we knew about data & databases o
W a S fO r t h e . V S . Big data has gained popularity among numerous associations and can be

more helpful for businesses like banking, online businesses, insurance

:
manufacturing, and so forth to entice their clients. When the volume of the

data was low, older technology could usually easily manage and process it.

What happened?
Rise of “NoSQL" databases

Features like schema, referential integrity, joins, etc., all moved from the
database to the application code (or were more or less ditched)
1. implemented ad hoc

2. schema implicit in procedural code
—> no real opportunity to manage complex models

Result: more velocity (with caveats), more volume (maybe), but
(or at least no good way to handle variety) WS

REALLY BAD IDEA:

Features like schema, referential integrity, joins, etc., all moved from the
database to the application code (or were more or less ditched)

1. implemented ad hoc

2. schema implicitin procedural code
—> no real opportunity to manage complex models

What about relational?

The world does not always fit in rigid tables
or
You end up with millions of columns

dWS

What about relational?

The world does not ativays fit in rigid tables

Ny
V1

You end up with millions of columns

Hard to understand, hard to maintain, hard to evolve

* also: complex queries (too many joins, etc.) aWws

Enter graphs and ontologies

dWS

Some background: Graphs, ontologies, RDF, etc.

Graphs have been around since the 1730s

Ontologies have been around since the very early 1900s

RDF emerged in the late 1990s, but should be seen as coming from the
frame-based KR tradition (since the 1970s)

Long despised by database folks

« the relational algebra is not particularly useful for optimizing this stuft

« also: the database people and KR people did not talk to one another. ..
dWS

\-/‘7

Introduction to RDF

Simple KR language, cornerstone of the “Semantic Web stack”

Widely adopted and deployed

» about half of all Web pages contain some embedded RDF
* all Adobe documents contain some RDF

* elC.

“RDF has turned out to be the most
there is.” - Charles Ivie (AWS) QWS

Does RDF scale? (The first two "Vs")

(RDF decomposes into “triples’, effectively these are the graph edges)

Early Semantic Web conferences had a “billion triple challenge”
Several years ago, AllegroGraph announced they had ingested 1T triples

Single Amazon Neptune cluster now scales up to about 0.5T triples

dWS

Here is one example of how RDF scales...

of Runs on multiple (federated)
Amazon Fulfillment is used to Neptune clusters
« investigate fulfillment processes Size:
* investigate lost & found -issues triples
* improve precision of product recalls 4B new triples per day
Extends the PROV-0 ontology: Queries (p95):
models the end-to-end logistics < 50 msto find a node

process as a form of provenance < 1 sto retrieve the whole path

Here is one example of how RDF scales...

Size:
triples
4B new triples per day
Queries (p95):
< 50 msto find a node
But what about the other "Vs"...? < 1sto retrieve the whole path

But what about the other "Vs"...?

dWS

Variety
Veracity

Value

Vl d bl | |ty, Variabil ity, ViSCOSity, Validity, Vulnerability, Volatility, blah blah bizh...

dWS

Variety

RDF and ontologies are well suited to
Complex models supported

Ontologies make complex data

tends to increase variety

...and variety implies

dWS

Veracity

Easy to capture in RDF

Logical inference supports

Declarative, accessible ontologies promote

dWS

Value

'd rather talk about cost here... (the cost of the
Semantic Web stack, that is)

e cost of maintenance
e cost of technical debt

* cost of redundancy
* etc.

dWS

Variety
Veracity

Value

These do not start with a "V*
out should be included:

Complexity
Interoperability

as the enabler

dWS

Semantics, and what is that anyway?

dWS

Semantics YOU KEEP USING THAT WORD

Overused word, thrown around liberally “ T

Most people do not really know what

the term means | DOINOT THINK T MEANS WHAT YOU THINK(IT MEANS

* (cue scene from “The Princess Bride")

1. Separating formal semantics from one's own (human) interpretation?

2. Where does semantics come from?
adWs

Separating formal semantics from one’s own interpretation

Example: JSON

* people say “my data is just JSON" and “JSON is easy to understand”

* but JSON has no semantics (at all), so any “understanding” is based on some
external semantics (typically not declarative or accessible)

dWS

*JSON is easy to understand”

{

“first name": "Ora",

"family name": “Lassila"

"degree”: "Ph.D"

"place of birth": "Helsinki",

"hobbies": ["photography”, “scale models”]
J

dWS

*JSON is easy to understand”

{

"etunimi”; "Ora"

"sukunimi”: “Lassila"

"tutkinto": "TKT",

"syntymapaikka”: "Helsinki’,

"harrastukset”: ["valokuvaus®, “pienoismallit”]
J

dWS

Understandability of JSON is a fallacy

dWS

Where does semantics come from?

1. Relations

2. Relations

ip of

ip of

0

0

ata to definitions (ontologies)

ata to some other data

3. Software that interprets data

We want more of #1 and #2, and (much) less of #3

dWS

RDF vs. “the other kinds of graphs”

dWS

RDF vs. Labeled Property Graphs

Totally different origins:

* RDF: knowledge representation, Web, open world

» LPG: databases, software development, closed world

RDF is a whereas LPGs are

« if you use RDF as a mere data structure, you are “doing it wrong"
e (and mind you, RDF is only incidentally a graph)

LPGs have good uses, but knowledge graphs should not be one of them
dWS

\-/‘7

RDF vs. Labeled Property Graphs

*

True, but not really relevant

e similarly, you could say any Turing-complete programming language is just
like any other Turing-complete programming language

* you could build your KG system using LPG, but why?

dWS

* (with apologies to Gertrude Stein) : 5

Features of RDF you end up reinventing if you use LPGs

Strong, global identifiers

Predictable (and easy) graph merging
Standardized interchange formats

Schema language (for defining ontologies)
Reasoning

Federated queries

dWS

Features of RDF you end up reinventing if you use LPGs

Strong, global identifiers

Predictable (and easy) graph merging
Standardized interchange formats

Schema language (for defining ontologies)
Reasoning

Federated queries

dWS

Ora’s Rule of Knowledge Graph Implementation

"Any sufficiently sophisticated knowledge
graph system built using an LPG contains
an ad hoc, informally-specified, bug-ridden
implementation of half of RDF." *

* (with apologies to Philip Greenspun re: aWws
“Greenspun’s Tenth Rule” - look it up) A 5

Cou

"Pro

ld there be better alignment between RDF and LPGs?

ject OneGraph” (AWS)

practical goals: common storage & query language interoperability

* we already have —> mixed use of RDF and LPG data

» a proposal for LPG-style composite datatypes for RDF (via datatypes)

RDF

1.2 (formerly “RDF-star")

* easier use of reification finally gives us “edge properties”

* RDF 1.2 is (e.g., edges between edges)

« particularly well suited for use cases with cross-cutting aspects QWS

Finale (pronounced “finally” ;-)

dWS

Did we miss something? What else needs to scale?

We have speed and size (velocity and volume) covered

It we really apply the Semantic Web stack we can conquer variety

* (including challenges of complexity and interoperability)
« this should also take care of the “things not strings” issue

So what else?

dWS

USER EXPERIENCE!

User interfaces do not scale (vis-a-vis expressivity)

We have extremely expressive data, but Ul expressivity lags behind

e tabular views dominate

» graph visualization seldom scales, and may not be the answer either

* (also, | am not convinced that LLMs are the answer)

For years | (erroneously) convinced myself that this is not a problem
specifically the Semantic Web community should fix

* | am not all that convinced anymore...

dWS

My “call to arms” for you:

Velocity and volume already covered

We have solutions for variety, complexity and interoperability

Please make all this technology easier to use!

* | see advances that make developers' lives easier

* | do not see the same for end users (instead, we are told that Al solves all)

dWS

Summary

Big Data & demise of well-established data techniques was a

3Vs:

» generally, volume and velocity are not a problem anymore

« with increased complexity, the relational approach falls short, but ontologies
and graphs hold a lot of promise = variety covered

| see user interaction and user interfaces as the “final frontier”

dWS

Thank you! Any questions?

Contact: ora@amazon.com

dWS

\./‘7

dWS

