
Semantic Web standards and a
little bit of Python go a long way

Using R2RML/RML, SPARQL, and 
Python to transform CSV to RDF

Dr. Ora Lassila
Founder, So Many Aircraft

(also: Principal Technologist, Amazon Neptune)

July 2025



Premise: Tools for this exist (& have for many years)

The Semantic Web stack is 

a collection of easy-to-use 

standards and technologies.

Their application can be 

“orchestrated” with simple 

Python scripting and some 

open-source libraries.

RDFS
OWL

modeling and reasoning

R2RML
RML

mapping legacy data

SPARQL

creation and manipulation

SHACL

data validation (and modeling)

Python + OSS libraries

All this should be easy!
is



Some background

So Many Aircraft: a publisher focusing

on aircraft and aviation history

•we have published two books (so far)

•we use a knowledge graph for our reference library (4,500+ pubs), photo 
collection (60k+ original photos), and an aviation related SKOS taxonomy 
(5,000+ concepts)

Over the years we have produced some open-source Python 

libraries for working with RDF, and built our internal

software using those



OMG Challenge solution overview

Simple flow that uses RML and SPARQL to create and manipulate RDF

• RML ≈ 70 triples, ontology ≈ 60 triples, code ≈ 40 lines of Python

• 79k lines of CSV à 1.4M triples, about 4 min on an old Mac (Intel)

Wrote an ontology for this domain that extends or otherwise

uses FIBO and some other public ontologies

Map CSV to RDF Transform via SPARQL queries
RDFCSV

ontology

KG

RML

produce clean up



What was difficult?

Dataset in general not particularly well documented

• had to make some guesses about the overall data model

• much of the model was really inferred from the types of values different columns of 
the data had, and not so much from the column names

Date format undocumented

• Excel representation seemed to work

In some cases we had multiple options how to map to existing ontologies

• e.g., for lat/long we chose OMG LCC, not schema.org or WGS84

Unclear how some of the IDs work



Implementation details

Built entirely on open-source software: RDFLib and our own 

libraries available on PyPI

tinyrml: a Python-friendly implementation of RML

• accepts Iterable[dict] (basically a list of objects) as source; allows 
Python expressions to be used in mappings

rdfhelpers: offers a way to easily compose operations

• “fluent” API: every operation produces a graph as a result of
acting on the graph from the previous operation



Implementation details
Composable()\

.mapIterable(global_bindings={"convert_excel_date": convert_excel_date},
mapping=MAPPING,
iterable=csv.DictReader(source)) \

.bind("fdicib", FDICIB) \

.bind("tmp", "https://somanyaircraft.com/data/experimental/fdicib/schema/tmp#") \

.bind("Iptc4xmpCore", "http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/") \

.bind("photoshop", PHOTOSHOP) \

.bind("fibo-be-le-fbo", FIBO + "BE/LegalEntities/FormalBusinessOrganizations/") \

.bind("fibo-fnd-dt-fd", FIBO + "FND/DatesAndTimes/FinancialDates/") \

.bind("fibo-fnd-plc-adr", FIBO + "FND/Places/Addresses/") \

.bind("lcc-cr", "https://www.omg.org/spec/LCC/Countries/CountryRepresentation/") \

.bind("cmns-dt", "https://www.omg.org/spec/Commons/DatesAndTimes/") \

.update("""
DELETE { ?bank ?p ?o }
WHERE {

?bank a fibo-be-le-fbo:Branch ; ?p ?o
FILTER (isBlank(?bank))

}
“””) \
.update(“””

DELETE {
?bank tmp:city ?city ; tmp:address ?address ; tmp:zip ?zip ; tmp:state ?state

}
INSERT {

?bank fdicib:address [
Iptc4xmpCore:Location ?address ;
photoshop:City ?city ;
photoshop:State ?state ;
fibo-fnd-plc-adr:hasPostalCode ?zip

]
}
WHERE {

?bank a fibo-be-le-fbo:Branch ;
tmp:city ?city ; tmp:address ?address ; tmp:zip ?zip ; tmp:state ?state

}
""") \
.serialize(TARGET_RDF)

1. Create pipeline
2. Map CSV
3. Add namespaces

4. Delete anomalous data

5. Transform address data

6. Serialize



Possible enhancements

Multiple sources files (and source formats) ✓ already supported

•map multiple files, map repeatedly, use new formats (e.g., Excel)

More expressive mappings ✓ already supported

• tinyrml lets you use arbitrary Python expressions in mappings

Source data quality control ✓ already supported

•use SHACL to find errors or missing values, PROV-O for lineage

LLM integration? ✕ under consideration



Questions?
https://www.somanyaircraft.com

ora@somanyaircraft.com


